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Abstract
Introduction Mixture modelling is increasingly being considered where a potential cure leads to a long life. Traditional 
methods use relative survival models for frail populations or cure models that have improper survival functions with theo-
retical infinite lifespans. Additionally, much of the work uses population data with long follow-up or theoretical data for 
method development.
Objective This case study uses life table data to create a proper survival function in a real-world clinical trial context. In 
particular, we discuss the impact of the length of trial follow-up on the accuracy of model estimation and the impact of 
extrapolation to capture long-term survival.
Methods A review of recent National Institute for Health and Clinical Excellence (NICE) immuno-oncological and chi-
meric antigen receptor (CAR) T-cell therapy submissions was performed to assess industry uptake and NICE acceptance 
of survival analysis methods incorporating the potential for long-term survivorship. The case study analysed a simulated 
trial-based dataset investigating a curative treatment with long-term mortality based on population life tables. The analysis 
examined three timepoints corresponding to early trial, end-of-trial follow-up and complete follow-up. Mixture modelling 
approaches were considered, including both cure modelling and relative survival approaches. The curves were evaluated 
based on the ability to estimate cure fractions and mean life in years within the time span the models are based on and when 
extrapolating to capture long-term behaviour. The survival curves were fitted with Weibull distributions using non-mixture 
and mixture cure models.
Results The performance of the cure modelling methods depended on the relative maturity of the data, indicating that care 
is needed when deciding when the methods should be applied. For progression-free survival, the cure fraction simulated 
was 15%. The cure fractions estimated using the traditional mixture cure model were 43% (95% confidence interval [CI] 
30–57) at the first analysis time point (40 months), 15% (95% CI 12–20) at the end-of-study follow-up (153 months) and 
0% (95% CI 0–100) at the end of follow-up. Other standard cure modelling methods produced similar results. For overall 
survival, we observed a similar pattern of goodness of fit, with a good fit for the end-of-study follow-up and poor fit for the 
other two data cuts. However, in this case, the estimate of the cure fraction was below the true value in the first analysis data.
Conclusions This case study suggests cure modelling works well with data in which the disease-specific events have had 
time to occur. Care is needed when extrapolating from immature data, and further information should support the estimation 
rather than relying on statistical estimates based on the trial alone.

1  Background

In recent years, pharmaceutical innovations in cancer treat-
ments have led to global improvements in survival profiles, 
with long-term survivorship demonstrated across many indi-
cations [1]. However, developments in underlying clinical 
mechanisms (e.g. immuno-oncological and gene therapies) 
have meant that changes in survival outcomes affect more 
than simply the absolute level of survival observed [2–4]. 
An increasing number of current and future cancer drugs 
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promise considerable increases in long-term survival for 
a proportion of treated patients. Consequently, these tech-
nologies are expected to affect not only the absolute level of 
survival observed in a treated cohort but also the long-term 
survival curve behaviour. This manifests as a plateau within 
the Kaplan–Meier (KM) curve, where observed events often 
appear to abruptly become less common, owing to the ris-
ing proportion of the surviving cohort that is at low risk of 
an event following treatment [5]. One example of this is the 
study by Schadendorf et al. [6] on ipilimumab in melanoma, 
in which there was a clear plateau in the KM curve. Other 
examples are available [7, 8].

For regulatory and health technology appraisal (HTA) 
bodies to evaluate the full clinical and economic value of 
a new technology, it is typically necessary to extrapolate 
beyond the observed clinical trial evidence. Many years of 
follow-up are required to track every patient in a cohort until 
their death or attrition, and HTA submissions usually take 
place years before these data are available. This is particu-
larly true when a proportion of patients is at a lower level of 
risk, meaning a cohort could potentially require decades of 
follow-up to produce a complete set of survival observations. 
While methods to extrapolate beyond the limit of KM data 
are well-established and accepted by HTA agencies [9–12], 
these ‘standard’ methods are limited in their ability to accu-
rately extrapolate more complicated survival functions. Con-
sequently, there is an increasing need for modelling methods 
that capture long-term survivorship.

Cure modelling has existed in survival analysis since the 
1950s [13]. The theoretical work behind mixture cure mod-
elling (MCM) uses either a relative survival situation where 
it is likely that events—be it death or progression—for cured 
and uncured patients will occur within similar timeframes 
or the theoretical construct that, once cured, a subject lives 
forever.

In the relative survival setting, the mixture model uses a 
baseline survival function, S∗(t) , that captures the survival 
rate of general population of interest. The approach then 
models what fraction survive at that rate, � , and how to 
adjust that survival curve for the uncured fraction, S�

U
(t) as 

follows [14]:

This formulation creates a term that is a product of sur-
vival functions, which has been shown to be valid if the haz-
ard rates of the two survival functions are independent [15].

Cure modelling from a mixture model approach differs in 
that the first term, SC(t) , which is the survival function for 
those cured, only applies to the cured population, and the 
second survival function, SU(t) , only applies to the uncured 
population [16]:

In this way, SU(t) contains all causes of mortality as com-
pared with S�

U
(t) , which only contains the excess hazard of 

not being cured. In the theoretical construct of a true cure 
model, SC(t) is often 1, reducing to the improper survival 
function:

In a real-world context, relative survival models would 
be appropriate when either the disease is aggressive and in 
a much older population than commonly seen in clinical 
trials or the disease is indolent and in a younger popula-
tion. These are settings where the shapes of the two survival 
curves are similar and it is the hazard rates that differ. The 
theoretical cure model with an improper survival function 
is not realistic in a health economics setting. Ultimately, 
implementing the models for health economic settings 
would require a combination of approaches that would use 
the parameters from the cure model to capture the uncured 
population and data from life tables or registries to capture 
the cured population.

Several papers have demonstrated successful application 
of cure modelling to longer-term, more representative data-
sets. For example, Mariotto et al. [17] investigated metastatic 
breast cancer with 8 years of follow-up, and Othus et al. [8] 
examined multiple myeloma at 15 years. Yu et al. [18] per-
formed a simulation methodological study and identified that 
the bias of the methods depends on the maturity of the data.

S(t) = S
∗(t)

[

� + (1 − �)S�
U
(t)
]

S(t) = �SC(t) + (1 − �)SU(t)

S(t) = � + (1 − �)SU(t)

Key Points for Decision Makers 

Theoretical work in the development of mixture cure 
modelling often considers situations where events for 
cured and uncured patients will likely occur within 
similar timeframes; this is unrepresentative of most cases 
where cure modelling has been applied for economic 
modelling.

This case study suggests that cure modelling works 
well with data where disease-specific mortality has had 
enough time to occur but age-related mortality has not. 
In contrast, immature data give little information for 
estimating the probability of cure, potentially leading to 
overestimation or considerable uncertainty in the cure 
fraction.

As pivotal trial data alone are unlikely to be sufficient 
in a health technology appraisal setting, we recommend 
considering the use of supportive earlier-phase data, data 
on mechanism of action, biological data on the ability 
to translate observations across tumour types, and direct 
clinical input to assess the estimated cure fraction.
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Other approaches are in development that aim to model 
and extrapolate the survival behaviour of a heterogeneous 
or mixed population, composed of subjects from a cured 
population and an uncured population, from intermediate 
outcomes or capture an overall shape that does not fit the 
traditional parametric approaches without formally defining 
a mix of patients (outside the scope of this article). These 
include response-based and spline-based approaches, com-
peting risk approaches and simply using the KM estimates 
directly until a chosen timepoint and basing extrapolations 
on the remaining observations [19–23].

In this study, we present the findings from a literature 
review exploring current attitudes of UK decision makers 
towards using MCM or spline-based methods. We then 
report on the ability of ‘standard’ and cure methods to cap-
ture and extrapolate survival of a mixed population using a 
simulated case study dataset based on actual disease progres-
sion rates from the literature, coupled with the conditions of 
a clinical trial from a similar population. We investigated the 
impact of introducing a hypothetical therapy with the poten-
tial for long-term survivorship into this simulated popula-
tion, testing the ability of each potential method to fit the 
underlying data at three different durations of follow-up. The 
results are then discussed across timepoints within the three 
types of comparisons: estimation, apparent accuracy of the 
fits and ability to extrapolate. Finally, we highlight the need 
for guidance and provide evidence to aid development of 
such guidance.

2  Methods

2.1  National Institute for Care and Excellence (NICE) 
Submission Review

Information was extracted from the final appraisal docu-
ment, committee papers, Evidence Review Group report 
and appraisal consultation document for immuno-oncolog-
ical and chimeric antigen receptor (CAR) T-cell therapy 
submissions to the National Institute for Health and Care 
Excellence (NICE) published between 2017 and 2018. Data 
extraction focused on the survival analysis methods used 
and how they were received and the final decision on the 
appropriate method.

2.2  Analysis Methods

The analysis methods considered for estimation were non-
mixture cure models (NMCMs) and MCMs. Only the 
Weibull distribution was considered [24]. The implementa-
tions and theories behind them are presented here.

2.2.1  Non‑mixture and Mixture Cure Models

The NMCM and MCM were implemented with the flex-
survcure package in R and distinguished with the mixture 
parameter being FALSE or TRUE, respectively.

In this context, the NMCM survival function of the het-
erogeneous population is of the form:

where S(t) is the population survival function, � is the cure 
fraction, Fz(t) is the cumulative distribution function and 
SZ(t) is the survival function for the uncured subjects. For the 
Weibull distribution, the software reported a cure fraction, 
shape parameter and rate parameter for the model.

The MCM is a modification of the standard mixture and 
can be expressed as:

where SC(t) is the survival function for the cured population 
and  SU(t) is the survival distribution for the uncured popula-
tion. When run as a cure model, SC(t) was set to unity and 
� , and the parameters for SU(t) were estimated with 95% 
confidence intervals.

2.2.2  Relative Survival

Where cure models assume a survival function of 1 for those 
cured, relative survival models assume a survival function 
for those cured and a second survival function for those who 
remain uncured. The survival function for those who are 
uncured is a relative survival function that captures the dif-
ference between the hazard rates, which when independent 
is a product term. The model as presented in Lambert [25] 
is generally expressed as:

In this formulation, the survival curve for cured subjects 
is SC and for uncured subjects is SCS�U(t). Whether the cure 
model is a relative survival model or not is controlled by the 
bhazard option in flexsurvcure. When the option is not used, 
a traditional cure model with a cured survival function of 1 
is estimated. If the bhazard option is used, the model is a 
relative survival model. The baseline hazards (the rates for 
the survival curve for the cured subjects) are constants and 
can be either constant across all subjects or vary by subject. 
Both have been considered identified as constant baseline 
and individual baseline. In this model, SC(t) is known and 
the cure fraction, � , and the parameters for S�

U
(t) are esti-

mated with 95% confidence intervals.

S(t) = �
FZ (t) = exp

(

ln (�) − ln (�)SZ(t)
)

S(t) = �SC(t) + (1 − �)SU(t)

S(t) = SC(t)
(

� + (1 − �)S�
U
(t)
)
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In this work, all three options, no baseline, constant base-
line and individual baseline were considered.

2.3  Implementation of Cure Models

The cure models were implemented based on the work of 
Lambert et al. [14, 25], which adds the lifetime mortality 
survival curve to the cure models. Essentially, the param-
eters are estimated assuming either cure or a selected base-
line hazard rate. The baseline survival function, SC(t) , is 
then replaced with information from the life tables in a non-
parametric way, S∗(t) . The model for the NMCM is:

where S∗(t) is the expected survival function, which, in this 
case, came from general population mortality life tables. 
Note, SC(t) is 1 in Sect. 2.2 and omitted in that case. Simi-
larly, for the MCM, this can be expressed as:

2.4  Simulated Dataset

A dataset of times to progression and times to death was 
simulated based on a hypothetical single-arm clinical trial 
design. Recruitment dates for each subject and the poten-
tial for withdrawing from the study were included in the 
simulation. Dataset characteristics were selected to reflect 
real life as much as possible (i.e. using non-round numbers). 
Survival times of non-cured subjects were taken from a pub-
lished paper on an aggressive disease with a high hazard rate 
to best reflect the type of data likely to be seen in a real-life 
scenario [26]. The dataset comprised 347 patients. These 
patients were subjected to an intervention that, if success-
ful, would allow their lifetime risks to return to those of 
the general population. If unsuccessful, progression would 
generally occur before 100 months, and death would usually 
occur before 150 months.

Each subject was then identified as belonging to one of 
three groups at random: those who remained uncured, those 
cured after progression and those cured before progression. 
Hypothetical cure fractions were defined within the simu-
lated dataset as 15% pre-progression and 25% post-progres-
sion, for an overall cure rate of 40%. These cure fractions 
allowed for examining a higher cure rate (40%) and a lower 
cure rate of 15% and were not intended to be accurate to a 
specific therapy. It was considered important to allow for 
long-term survival post-progression because this has been 
observed in previous immunotherapy trials. Transition 
matrices and details of how these were derived are presented 
in the electronic supplementary material (ESM)-1.

S(t) = S
∗(t)exp

(

ln (�) − ln (�)SZ(t)
)

S(t) = S
∗(t)

(

� + (1 − �)SU(t)
)

Study characteristics were also addressed in the simu-
lation, including time of recruitment, loss to follow-up 
and planned study analysis time points. Recruitment was 
assumed to occur over a 27-month period. Subject start 
times were assumed to be uniformly distributed over this 
period. Loss to follow-up due to subjects discontinuing from 
the trial either because of adverse events, drop-out or with-
drawal of consent was simulated by selecting and censoring 
18 subjects at random pre-progression and an additional 36 
subjects post-progression, representing a 15% loss to follow-
up. The time of discontinuation was simulated uniformly 
across the time period of withdrawal. Three study analysis 
time points (data cuts) were considered for the simulation:

Time of first analysis: 40 months from the start of recruit-
ment. Given that most UK submissions conducted for 
immuno-oncology therapies occur with less mature data 
cuts, this represented a reasonable maximum maturity 
level for a first product submission.
End of study with follow-up: 153 months from the start of 
recruitment. This was the latest an observation could be 
recorded, according to the simulated study design. This is 
considerably longer than the follow-up available in most 
NICE submissions.
Complete dataset: 500 months of follow-up. This does not 
reflect data collected in clinical trials and was possible 
only because these data were simulated. This set provided 
a comparison for the extrapolated results of models from 
the prior datasets.

The simulated complete dataset KM curves are given in 
ESM 1. The key value this work adds is considering how a 
real-life data-collection process affects survival-type data 
and provides an example of how the incorrect application of 
cure modelling methods can lead to erroneous conclusions.

2.5  Evaluation

The various methods were evaluated based on their ability 
to estimate the cure fraction, the apparent goodness of fit to 
the dataset the models were based on and the ability of each 
model to extrapolate to the true complete dataset. The ability 
to estimate the cure fraction, the shape parameter and the 
scale parameter was based on 95% confidence intervals as 
reported by the software package. These confidence intervals 
were compared with values from fits directly to the uncured 
population, which could be obtained because the cured sta-
tus was known from the simulation process. The ability of 
the methods to fit curves up to the timepoint in question was 
based on comparisons with the censored KM curves for each 
data cut. The ability of the models to extrapolate to the true 
curve were based on comparisons with the complete dataset.
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3  Results

3.1  NICE Submission Review

Summaries of the survival analysis in all considered apprais-
als are provided in ESM 2, along with a more detailed 
review. In total, 23 completed NICE appraisals of immuno-
oncological interventions published between 2017 and 2018 
were identified. Of these, 20 reported at least some criticism 
relating to immaturity of data, with the majority having a 
minimum overall survival (OS) follow-up of ≤ 12 months 
(11/18 that reported minimum follow-up). Furthermore, 
eight submissions submitted OS data with ≤ 24 months of 
maximum follow-up (see Tables 1 and 2 in ESM 2).

Four completed submissions (technology appraisal [TA] 
478, TA492, TA520 and TA525) included the presentation 
of MCM in some form [27–30]. One submission (TA417) 
presented a method assuming all 5-year survivors remaining 
on treatment had the same mortality as the general popula-
tion, thereby assuming a cure fraction not based on trial data. 
The other 18 submissions considered a mixture of ‘standard’ 
parametric survival models, spline models, fractional poly-
nomial models (all applied to network meta-analyses) and 
piecewise approaches using KM data directly or switching 
to using general population mortality at some trigger point. 
Of the five submissions presenting various cure methods, no 
reimbursement decisions were explicitly made using MCM 
results with any cure fraction > 0%, although for TA417 the 
final appraisal document did state that NICE was willing to 
consider some scenarios assuming a cure fraction, just not 
as the decision-making result.

To supplement this review, all available materials (at the 
time of writing) from the three NICE appraisals for CAR-T 
therapies (ID1166 for tisagenlecleucel-T; ID1115 for axi-
cabtagene ciloleucel; ID1167 for tisagenlecleucel-T) were 
also reviewed. These appraisals were important to review 
because they consider the latest group of therapies to dem-
onstrate plateaus within their KM curves, and the mode of 
action of CAR-T therapies suggests candidacy for an MCM 

approach. In all three cases, MCM was accepted in some 
form by NICE and the respective Evidence Review Groups.

Overall, at this time, no completed HTA in the UK has 
supported survival extrapolations estimated solely using 
trial-based MCM (with a non-zero cure fraction), but the 
method has received consideration in ongoing appraisals that 
show clear evidence of plateau. However, there appears to 
be no clear consensus on the appropriateness of MCM in 
different survival analysis contexts.

3.2  Estimation Results

The estimation results for progression-free survival (PFS; 
Table 1) indicated good estimation for the cure modelling 
approaches at 153 months; however, estimated values were 
above the true value for all methods at 40 months and below 
the true value for all methods at 500 months. The simula-
tion provided a true value of 15% cure for these estimates, 
whereas the cure modelling methods estimated just over 40% 
at 40 months and 0% at 500 months.

The estimation results for OS (Table 2) at 153 months 
were still reasonable for the cure modelling methods, with 
the true value of 40% falling within the confidence intervals. 
The cure fractions were below the true value for both 40 
months and the complete dataset, with an estimate of 0% 
cured.

The impact of cure modelling on the estimated mean life-
years (shown in Table 3) demonstrated that estimation of the 
time to progression from data at 40 months exaggerated the 
efficacy of the treatment. Estimation based on the complete 
dataset understated the efficacy of the treatment in terms of 
progression.

Mean life-years for OS (Table 4) were below the true 
values for the data cut at 40 months and the complete data-
set for the cure modelling approaches. At 153 months, the 
approaches provided reasonable estimates.

Table 1  Estimation of the cure 
fraction (PFS)

CI confidence interval, FU follow-up, PFS progression-free survival

PFS percentage cured (95% CI)

Month 40 Month 153 Complete FU

True value 0.15 0.15 0.15
Non-mixture cure modelling 0.42 (0.28–0.57) 0.15 (0.1–0.2) 0 (0–0.09)
Non-mixture cure modelling—constant baseline 0.43 (0.3–0.58) 0.16 (0.11–0.22) 0 (0–0.09)
Non-mixture cure modelling—individual baseline 0.44 (0.3–0.58) 0.16 (0.11–0.22) 0 (0–0.09)
Mixture cure modelling 0.43 (0.3–0.57) 0.15 (0.12–0.2) 0 (0–1)
Mixture cure modelling—constant baseline 0.44 (0.32–0.58) 0.17 (0.13–0.21) 0 (0–0.97)
Mixture cure modelling—individual baseline 0.45 (0.32–0.58) 0.17 (0.13–0.21) 0 (0–0.98)
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3.3  Survival Curves

The estimated survival curves for the three timepoints for OS 
(Figs. 1, 2, 3) demonstrated that the curves generally fitted 
well over the timespan the model is based on. However, with 
the exception of the end-of-study timepoint, the curves failed 
to capture the true survival curves across time.

For the interim analyses timepoint, the curves captured 
the true curve up to 40 months. At 40 months, the time of 
the data cut, the cure modelling approaches continued to 

capture the behaviour up to 100 months and then fell below 
the true survival curve.

For the end-of-study timepoint, the methods all followed 
the true survival curve. The cure modelling approaches fell 
slightly below observed survival from approximately 100 
months up to 250 months and were slightly above observed 
survival from approximately 300–400 months.

The models based on the complete dataset provided 
curves that generally fell below observed survival, particu-
larly beyond 150 months. The cure modelling approaches 

Table 2  Estimation of the cure 
fraction (OS)

CI confidence interval, FU follow-up, OS overall survival

OS percentage cured (95% CI)

Month 40 Month 153 Complete FU

True value 0.40 0.40 0.40
Non-mixture cure model 0 (0–1) 0.43 (0.36–0.49) 0 (0–1)
Non-mixture cure model—constant baseline 0 (0–1) 0.47 (0.4–0.54) 0 (0–1)
Non-mixture cure model—individual baseline 0 (0–1) 0.47 (0.4–0.54) 0 (0–1)
Mixture cure model 0 (0–1) 0.43 (0.37–0.49) 0 (0–0.99)
Mixture cure model—constant baseline 0 (0–1) 0.47 (0.41–0.54) 0 (0–0.95)
Mixture cure model—individual baseline 0.01 (0–1) 0.47 (0.41–0.54) 0 (0–0.94)

Table 3  Estimation of the mean 
life-years (PFS)

CI confidence interval, FU follow-up, PFS progression-free survival

PFS mean life-years (95% CI)

Month 40 Month 153 Complete FU

True value 6.06 6.06 6.06
Non-mixture cure model 4.5 (3.39–5.77) 4.66 (3.98–5.42) 5.23 (4.60–6.00)
Non-mixture cure model—constant baseline 11.62 (8.75–14.99) 5.98 (4.99–7.20) 5.05 (4.46–7.47)
Non-mixture cure model—individual baseline 12.02 (9.09–15.34) 6.23 (5.21–7.56) 5.27 (4.64–7.67)
Mixture cure model 12.06 (9.32–15.36) 6.23 (5.2–7.61) 5.28 (4.65–7.29)
Mixture cure model—constant baseline 11.86 (9.21–14.94) 5.98 (5.06–7.14) 5.23 (4.65–25.71)
Mixture cure model—individual baseline 12.24 (9.48–15.42) 6.22 (5.18–7.41) 5.46 (4.79–25.06)

Table 4  Estimation of the mean life-years (OS)

The upper bound of 25.71 years represents mean general population survival, i.e. a cure fraction of 100%
CI confidence interval, FU follow-up, OS overall survival

OS mean life-years (95% CI)

Month 40 Month 153 Complete FU

True value 14.07 14.07 14.07
Weibull survival model 6.42 (4.48–9.02) 10.96 (9.62–12.25) 11.31 (10.35–12.30)
Non-mixture cure model 6.66 (5.75–25.71) 13.47 (12.09–14.97) 11.31 (10.72–25.71)
Non-mixture cure model—constant baseline 6.66 (5.54–25.71) 14.28 (12.79–15.83) 12 (11.53–25.71)
Non-mixture cure model—individual baseline 6.68 (5.95–25.71) 14.3 (12.79–15.83) 12.03 (11.42–25.71)
Mixture cure model 6.47 (5.03–25.71) 13.53 (12.27–14.81) 11.31 (10.41–25.47)
Mixture cure model—constant baseline 6.51 (4.81–25.71) 14.32 (13.06–15.75) 12.01 (11.05–24.58)
Mixture cure model—individual baseline 6.53 (4.82–25.71) 14.34 (12.96–15.74) 12.03 (11.09–25.32)



www.manaraa.com

391Usefulness of Cure Modelling for Prediction of Survival Based on Data Maturity

rose above observed survival from approximately 50–150 
months before falling well below the true curve.

Similar to OS, for PFS there was a good fit to survival 
data using the end-of-study dataset, and poor fit when using 
the other two datasets (see ESM 3).

4  Discussion

Despite the mode of action of newer oncology therapies, 
there is often no visible plateau in KM data because of the 
short follow-up available at the time of HTA submission to 
NICE (most have < 12 months of minimum follow-up and 
many have a maximum follow-up of < 24 months). Conse-
quently, MCM is often difficult to justify to most review-
ers, even in situations where it would add value. Our results 
provide evidence to a sceptical reviewer that extrapolation 
methods other than the standard methods suggested in NICE 
Technical Support Document 14 [12] may be appropriate in 
some cases and improve upon the standard methods. Addi-
tionally, we provide recommendations on identifying these 
situations.

Overall, MCM appeared to be the least accepted of all 
the parametric survival approaches, despite its obvious rel-
evance to therapies with the potential for long-term survi-
vorship. Only one of the four reviewed submissions rejected 
an MCM approach explicitly because of a lack of evidence 
of a survival plateau; other MCMs were rejected because 
of a lack of justification for the estimated cure fractions for 
PFS and OS or because of the similarity of the final result-
ing extrapolation to methods with more precedent, such as 
KM plus extrapolation. However, when considering NICE 
submissions in CAR-T therapies, MCM appeared to be bet-
ter received, being accepted but not endorsed in every case 
so far.

Guidance on when MCM is likely to be suitable would 
assist committees in confidently selecting this method when 
it provides the most reasonable extrapolation of long-term 
survival, for example, when the mode of action or clinical 
expectation are suggestive of a future survival plateau.

The primary result of this case study is the evidence sup-
porting the use of the method with data that have reached 
an appropriate degree of maturity. Further to this, caution is 
needed when the techniques are applied to immature data, 

Fig. 1  Fit of the models to the overall survival KM data: interim 
analyses (month 40). Plots of fit to survival data for KM, non-mix-
ture cure model, and mixture cure model for a no cure, b no baseline 

hazard, c constant hazard and d individual hazard rates. KM Kaplan–
Meier. Figure created in R statistical software



www.manaraa.com

392 T. S. Grant et al.

resulting in considerable inaccuracy in the cure fraction. For 
the interim analysis results—which, if successful, would 
have concluded the trial and resulted in reimbursement—
the models did not extrapolate well, largely because of poor 
estimation of the cure fraction for PFS and for OS. The PFS 
estimation being above the true value was likely due to the 
high concentration of censored observations at or just before 
the 40-month point, which was when the data collection was 
simulated to occur. Up to 40 months, all of the models per-
formed adequately, but there was no indication of superiority 
to standard approaches. For OS, as the change in hazards had 
not yet been observed, the cure models failed to predict the 
impending plateau. Estimation of the mean life-years dem-
onstrated the high risk of using these methods on immature 
data. In this example, PFS was estimated to be longer than 
the OS because of the PFS overestimation.

For the end-of-study analyses, the methods worked well 
on data of this maturity; while the data would be considered 
incomplete given the missing long-term follow-up results, 
mortality due to the disease was largely completed. The cure 
modelling approaches improved the estimation of the extrap-
olated cure model. The NMCM outperformed the MCMs 

based on visual inspection. While there was a concentration 
of censored points at or just before 153 months in these 
models, these were generally all-cause events not associated 
with the disease in question and so did not inflate the cure 
fraction estimate.

The methods did not work well when applied to complete 
datasets, as all subjects had an event except those lost from 
the study either because of withdrawal or adverse effects. 
This created a situation where the cure fraction was based 
on those lost from the study and not the plateau in the middle 
of the survival curve. As a result, the cure fraction estimate 
fell below the true value, and the resulting curve was a single 
Weibull curve to the complete dataset instead of a Weibull 
curve for those events related to the disease. Non-parametric 
methods such as a KM approach might be preferred with 
complete datasets and alternative methods such as spline 
modelling and competing risk approaches. Separating the 
modelling of disease-related and non-disease-related mortal-
ity within the patient-level data may also be possible with 
more mature data where both types of events are observed.

A serious limitation to these approaches is the estimation 
methods in the software packages at this time. A constant 

Fig. 2  Fit of the models to the overall survival data: end-of-study 
analyses (month 153). Plots of fit to survival data for KM, non-mix-
ture cure model and mixture cure model for a no cure, b no baseline 

hazard, c constant hazard and d individual hazard rates. KM Kaplan–
Meier. Figure created in R statistical software
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hazard rate, at the individual or population level, for the 
baseline hazard is unrealistic in these situations. Relative 
survival models are more appropriate when the cured popu-
lation is still at high risk, which is not the situation being 
examined here. However, little difference between relative 
survival and cure models was observed in this case study.

Previous work on MCM has focused largely on the data-
sets with long-term follow-up (over 5 years) [2, 31]. Our 
findings align with these examples, providing an ideal basis 
for cure modelling, with available data that show the plateau 
before general population mortality has started to gain influ-
ence on the survival of the remaining cohort.

5  Conclusions

Healthcare decision makers have a difficult task in deciding 
which therapies to recommend; they must balance the need 
to use resources wisely with the need to treat life-threatening 
diseases in patients who are unlikely to have time to wait for 
more data to be generated. Decision makers must therefore 

identify an acceptable way to use the often short-term fol-
low-up data to make long-term survival predictions.

In this case study with simulated data, we demonstrated 
that cure modelling approaches can be useful with appropri-
ate data but will be misleading if the data are either imma-
ture or very mature; they should therefore be used with care. 
Within this simulation, cure modelling worked best when 
most disease-related events had occurred and most other-
cause mortality events were yet to occur. As this will vary by 
disease, clinical input will be important in the application of 
cure modelling methods. For example, the metastatic breast 
cancer work of Mariotto et al. [17] would indicate requiring 
at least 10 years of follow-up, whereas Othus et al. [8] used 
a 5-year follow-up, supporting the use of cure modelling 
for economic evaluation with this dataset. The simulated 
dataset from this study suggests that 10 years of data are 
required in this case. Secondary to the rate at which disease 
events occur is the average age of patients in the study. If 
the patients are mostly elderly, then all-cause mortality will 
begin sooner, leading to a different environment than the 
case examined here.

Fig. 3  Fit of the models to the overall survival data: complete dataset. 
Plots of fit to survival data for KM, non-mixture cure model and mix-
ture cure model for a no cure, b no baseline hazard, c constant hazard 

and d individual hazard rates. KM Kaplan–Meier. Figure created in R 
statistical software
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While this is a case study approach, and the conclusions 
are specific to these data, it makes the case that caution must 
be used with the application of cure modelling approaches 
and that simulation studies are required to better understand 
the limitations of the methods. Additional studies could 
establish how common these findings are or investigate 
specific aspects of the models. For example, the baseline 
hazard rates are relatively low, representing a healthy popu-
lation. For diseases that have high mortality rates even when 
patients are cured, these aspects might yield greater differ-
ences. This will be particularly interesting in the applica-
tion of individual baseline hazard rates, as the distribution 
of patients by sex and age might influence when this addi-
tional consideration is required. Sourcing mortality data for 
cured patients may also prove difficult, particularly in situ-
ations where it is not appropriate to use general population 
mortality.

Based on this case study, for situations with potential 
for cure but incomplete survival data, we would first rec-
ommend inspection of the KM curve for the presence of a 
plateau to determine whether the cure modelling output can 
provide reasonable extrapolations for predicting long-term 
events. This is consistent with the recommendation from 
Amico and Van Keilegom [32], who also referenced a test 
for a plateau proposed by Maller and Zhou [33]. Second, 
pivotal trial data alone are unlikely to provide sufficient 
information to estimate cure fractions in the HTA setting. 
We recommend using supportive earlier-phase data, data on 
mechanism of action and biological data on the ability to 
translate observations across tumour types and direct clinical 
input in assessing the estimated cure fraction. We suggest 
that a promising area for future research would be methods 
estimating the cure fraction that synthesise all available data 
and also incorporate direct expert elicitation.
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